Skip to content
Snippets Groups Projects
Commit a9a39c2b authored by Matthew Johnson's avatar Matthew Johnson
Browse files

update readme to link to images

parent 251d8bc3
No related branches found
No related tags found
No related merge requests found
......@@ -71,7 +71,7 @@ data = np.loadtxt('data.txt')
plt.plot(data[:,0],data[:,1],'kx')
```
![2D data](http://www.mit.edu/~mattjj/github/pyhsmm/data.png)
![2D data](https://raw.githubusercontent.com/mattjj/pyhsmm/master/images/data.png)
We can also make a plot of time versus the first principal component:
......@@ -80,7 +80,7 @@ from pyhsmm.util.plot import pca_project_data
plt.plot(pca_project_data(data,1))
```
![Data first principal component vs time](http://www.mit.edu/~mattjj/github/pyhsmm/data_vs_time.png)
![Data first principal component vs time](https://raw.githubusercontent.com/mattjj/pyhsmm/master/images/data_vs_time.png)
To learn an HSMM, we'll use `pyhsmm` to create a `WeakLimitHDPHSMM` instance
using some reasonable hyperparameters. We'll ask this model to infer the number
......@@ -156,11 +156,11 @@ for idx, model in enumerate(models):
plt.savefig('iter_%.3d.png' % (10*(idx+1)))
```
![Sampled models](http://www.mit.edu/~mattjj/github/pyhsmm/posterior_animation.gif)
![Sampled models](https://raw.githubusercontent.com/mattjj/pyhsmm/master/images/posterior_animation.gif)
I generated these data from an HSMM that looked like this:
![Randomly-generated model and data](http://www.mit.edu/~mattjj/github/pyhsmm/truth.png)
![Randomly-generated model and data](https://raw.githubusercontent.com/mattjj/pyhsmm/master/images/truth.png)
So the posterior samples look pretty good!
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment