Skip to content
Snippets Groups Projects
Commit 15b7d9a2 authored by Sebastian Bruijns's avatar Sebastian Bruijns
Browse files

Update file README.md

parent 3752fcfe
No related branches found
No related tags found
No related merge requests found
[![Build [![Build
Status](https://travis-ci.org/mattjj/pyhsmm.svg?branch=master)](https://travis-ci.org/mattjj/pyhsmm) Status](https://travis-ci.org/mattjj/pyhsmm.svg?branch=master)](https://travis-ci.org/mattjj/pyhsmm)
This is an edit to the existing pyhsmm package by [Matt Johnson](https://github.com/mattjj), [Alex Wiltschko](https://github.com/alexbw), [Yarden Katz](https://github.com/yarden), [Chia-ying (Jackie) Lee](https://github.com/jacquelineCelia), [Scott Linderman](https://github.com/slinderman), [Kevin Squire](https://github.com/kmsquire), [Nick Foti](https://github.com/nfoti). It is specifically adapted for the purpose of implementing an HDP-HSMM (infinite hidden Markov model with duration distributions) with dynamic logistic regression as observation distributions.
Install together with sab_pybasicbayes like this:
```python
conda create -n hdp_env_test python=3.7 pip numpy scipy matplotlib cython nose future requests
conda activate hdp_env_test
pip install pypolyagamma
pip install git+ssh://git@gitlab.tuebingen.mpg.de/agpd/sab_pybasicbayes.git
pip install git+ssh://git@gitlab.tuebingen.mpg.de/agpd/sab_pyhsmm.git
```
# Bayesian inference in HSMMs and HMMs # # Bayesian inference in HSMMs and HMMs #
This is a Python library for approximate unsupervised inference in This is a Python library for approximate unsupervised inference in
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment