Skip to content
Snippets Groups Projects
Commit dfe77870 authored by SebastianBruijns's avatar SebastianBruijns
Browse files

updated dynamic glm code

parent 7fdfc57a
No related branches found
No related tags found
No related merge requests found
from __future__ import division
from builtins import zip
from builtins import range
__all__ = ['Dynamic_GLM']
from pybasicbayes.abstractions import \
GibbsSampling
from pybasicbayes.abstractions import GibbsSampling
import numpy as np
from warnings import warn
from pypolyagamma import PyPolyaGamma
__all__ = ['Dynamic_GLM']
def local_multivariate_normal_draw(x, sigma, normal):
"""
Function to combine pre-drawn Normals (normal) with the desired mean x and variance sigma
Cholesky doesn't like 0 cov matrix, but we want it.
TODO: This might need changing if in practice we see plently of 0 matrices
This might need changing if in practice we see plently of 0 matrices
"""
try:
return x + np.linalg.cholesky(sigma).dot(normal)
......@@ -30,46 +28,51 @@ ppgsseed = 4
if ppgsseed == 4:
print("Using default seed")
ppgs = PyPolyaGamma(ppgsseed)
class Dynamic_GLM(GibbsSampling):
"""
This class enables a drifting input output iHMM with logistic link function.
States are thus dynamic GLMs, giving us more freedom as to the inputs we give the model.
Hyperparaemters:
TODO
Hyperparameters:
Parameters:
[weights]
n_regressors: number of regressors for the GLM
T: number of timesteps (sessions)
prior_mean: mean of regressors at the beginning (usually 0 vector)
P_0: variance of regressors at the beginning
Q: variance of regressors between timesteps (can be different across steps, but we use the same matrix throughout)
jumplimit: for how many timesteps after last being used are the state weights allowed to change
"""
def __init__(self, n_inputs, T, prior_mean, P_0, Q, jumplimit=3, seed=4):
def __init__(self, n_regressors, T, prior_mean, P_0, Q, jumplimit=1):
self.n_inputs = n_inputs
self.n_regressors = n_regressors
self.T = T
self.jumplimit = jumplimit
self.x_0 = prior_mean
self.P_0, self.Q = P_0, Q
self.psi_diff_saves = []
self.noise_mean = np.zeros(self.n_inputs) # save this, so as to not keep creating it
self.identity = np.eye(self.n_inputs) # not really needed, but kinda useful for state sampling, mabye delete TODO
self.psi_diff_saves = [] # this can be used to resample the variance, but is currently unused
self.noise_mean = np.zeros(self.n_regressors) # save this, so as to not keep creating it
self.identity = np.eye(self.n_regressors) # not really needed, but kinda useful for state sampling
# if seed == 4:
# print("Using default seed")
# self.ppgs = PyPolyaGamma(seed)
self.weights = np.empty((self.T, self.n_inputs)) # one more spot for bias
self.weights = np.empty((self.T, self.n_regressors))
self.weights[0] = np.random.multivariate_normal(mean=self.x_0, cov=self.P_0)
for t in range(1, T):
self.weights[t] = self.weights[t - 1] + np.random.multivariate_normal(mean=self.noise_mean, cov=self.Q[t - 1])
def rvs(self, inputs, times):
"""Given the input features and their time points, create responses from the dynamic GLM weights."""
outputs = []
for input, t in zip(inputs, times):
if input.shape[0] == 0:
output = np.zeros((0, self.n_inputs + 1))
output = np.zeros((0, 1))
else:
types, inverses, counts = np.unique(input, return_inverse=1, return_counts=True, axis=0)
# find the distinct sets of features, how often they exist, and how to put the answers back in place
types, inverses, counts = np.unique(input, return_inverse=True, return_counts=True, axis=0)
# draw responses
output = np.append(input, np.empty((input.shape[0], 1)), axis=1)
for i, (type, c) in enumerate(zip(types, counts)):
temp = np.random.rand(c) < 1 / (1 + np.exp(- np.sum(self.weights[t] * type)))
......@@ -125,15 +128,7 @@ class Dynamic_GLM(GibbsSampling):
timepoint_map[t] = total_types - 1
prev_t = t
# print(total_types)
# print(actual_obs_count)
# print(change_points)
# print(fake_times)
# print(all_times)
# print(timepoint_map)
# return timepoint_map
self.pseudo_Q = np.zeros((total_types, self.n_inputs, self.n_inputs))
self.pseudo_Q = np.zeros((total_types, self.n_regressors, self.n_regressors))
# TODO: is it okay to cut off last timepoint here?
for k in range(self.T):
if k in timepoint_map:
......@@ -158,8 +153,8 @@ class Dynamic_GLM(GibbsSampling):
self.pseudo_obs = np.zeros(total_types)
self.pseudo_obs[mask] = np.concatenate(pseudo_counts) / temp
self.pseudo_obs = self.pseudo_obs.reshape(total_types, 1)
self.H = np.zeros((total_types, self.n_inputs, 1))
self.H[mask] = np.array(predictors).reshape(actual_obs_count, self.n_inputs, 1)
self.H = np.zeros((total_types, self.n_regressors, 1))
self.H[mask] = np.array(predictors).reshape(actual_obs_count, self.n_regressors, 1)
"""compute means and sigmas by filtering"""
# if there is no obs, sigma_k = sigma_k_k_minus and x_hat_k = x_hat_k_k_minus (because R is infinite at that time)
......@@ -168,10 +163,10 @@ class Dynamic_GLM(GibbsSampling):
"""sample states"""
self.weights.fill(0)
pseudo_weights = np.empty((total_types, self.n_inputs))
pseudo_weights = np.empty((total_types, self.n_regressors))
pseudo_weights[total_types - 1] = np.random.multivariate_normal(self.x_hat_k[total_types - 1], self.sigma_k[total_types - 1])
normals = np.random.standard_normal((total_types - 1, self.n_inputs))
normals = np.random.standard_normal((total_types - 1, self.n_regressors))
for k in range(total_types - 2, -1, -1): # normally -1, but we already did first sampling
if np.all(self.pseudo_Q[k] == 0):
pseudo_weights[k] = pseudo_weights[k + 1]
......@@ -179,7 +174,7 @@ class Dynamic_GLM(GibbsSampling):
updated_x = self.x_hat_k[k].copy() # not sure whether copy is necessary here
updated_sigma = self.sigma_k[k].copy()
for m in range(self.n_inputs):
for m in range(self.n_regressors):
epsilon = pseudo_weights[k + 1, m] - updated_x[m]
state_R = updated_sigma[m, m] + self.pseudo_Q[k, m, m]
......@@ -192,7 +187,7 @@ class Dynamic_GLM(GibbsSampling):
if k in timepoint_map:
self.weights[k] = pseudo_weights[timepoint_map[k]]
"""don't forget to sample before and after active times too"""
"""Sample before and after active times too"""
for k in range(all_times[0] - 1, -1, -1):
if k > all_times[0] - self.jumplimit - 1:
self.weights[k] = self.weights[k + 1] + np.random.multivariate_normal(self.noise_mean, self.Q[k])
......@@ -205,7 +200,7 @@ class Dynamic_GLM(GibbsSampling):
self.weights[k] = self.weights[k - 1]
return pseudo_weights
# TODO:
# If one wants to resample variance...
# self.psi_diff_saves = np.concatenate(self.psi_diff_saves)
def _get_statistics(self, data):
......@@ -215,9 +210,6 @@ class Dynamic_GLM(GibbsSampling):
if isinstance(data, np.ndarray):
warn('What you are trying is probably stupid, at least the code is not implemented')
quit()
# assert len(data.shape) == 2
# for d in data:
# counts[tuple(d)] += 1
else:
for i, d in enumerate(data):
clean_d = d[~np.isnan(d[:, -1])]
......@@ -255,25 +247,25 @@ class Dynamic_GLM(GibbsSampling):
self.sigma_k_k_minus.append(self.sigma_k[k] + self.pseudo_Q[k])
def compute_means(self, T):
"""Compute the means, the estimates of the states."""
self.x_hat_k = [] # we have to reset this for repeating this calculation later for the resampling
self.x_hat_k_k_minus = [self.x_0]
"""Compute the means, the estimates of the states.
Used to also contain self.x_hat_k_k_minus, but it's not necessary for our setup"""
self.x_hat_k = [self.x_0] # we have to reset this for repeating this calculation later for the resampling
for k in range(T): # this will leave out last state which doesn't have observation
if self.gain_save[k] is None:
self.x_hat_k.append(self.x_hat_k_k_minus[k])
self.x_hat_k_k_minus.append(self.x_hat_k[k]) # TODO: still no purpose
self.x_hat_k.append(self.x_hat_k[k])
else:
x, H = self.x_hat_k_k_minus[k], self.H[k] # we will need this a lot, so shorten it
x, H = self.x_hat_k[k], self.H[k] # we will need this a lot, so shorten it
self.x_hat_k.append(x + self.gain_save[k].dot(self.pseudo_obs[k] - H.T.dot(x)))
self.x_hat_k_k_minus.append(self.x_hat_k[k]) # TODO: doesn't really have a purpose if F is identity
self.x_hat_k.pop(0) # remove initialisation element from list
def num_parameters(self):
return self.weights.size
### Max likelihood
def max_likelihood(self,data,weights=None):
def max_likelihood(self, data, weights=None):
warn('ML not implemented')
def MAP(self,data,weights=None):
def MAP(self, data, weights=None):
warn('MAP not implemented')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment