Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
GyriGauge
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Julius Steiglechner
GyriGauge
Commits
488064d3
Commit
488064d3
authored
2 months ago
by
Julius Steiglechner
Browse files
Options
Downloads
Patches
Plain Diff
Wrap most important segmentation metrics into one function.
parent
fb221a0b
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
evaluate_segmentation_quality.py
+330
-0
330 additions, 0 deletions
evaluate_segmentation_quality.py
with
330 additions
and
0 deletions
evaluate_segmentation_quality.py
0 → 100644
+
330
−
0
View file @
488064d3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
The aim of this module is to provide a method to evaluate a model on a dataset.
Created on Wed Jan 29 10:10:38 2025
@author: jsteiglechner
"""
from
typing
import
Callable
,
Dict
,
List
import
numpy
as
np
import
torch
from
segmentation_quality_measures.information_theoretic_based_metrics
import
(
variation_of_information
,
)
from
segmentation_quality_measures.prepare_tensors
import
(
encode_to_batch_times_class_times_spatial
,
)
from
segmentation_quality_measures.spatial_distance_based_metrics
import
(
hausdorff_distance_metric
,
)
from
segmentation_quality_measures.spatial_overlap_based_metrics
import
(
intersection_over_union
,
boundary_intersection_over_union
,
)
def
calculate_batch_intersection_over_union
(
output
:
torch
.
Tensor
,
target
:
torch
.
Tensor
,
num_types
:
int
,
considered_types
:
torch
.
Tensor
,
):
"""
Calculate the segmentation accuracy.
"""
output_one_hot
=
encode_to_batch_times_class_times_spatial
(
output
,
num_classes
=
num_types
)
target_one_hot
=
encode_to_batch_times_class_times_spatial
(
target
,
num_classes
=
num_types
)
scores
=
intersection_over_union
(
output_one_hot
,
target_one_hot
,
labels
=
considered_types
,
batch_iou
=
True
,
reduction
=
'
none
'
,
)
return
torch
.
mean
(
scores
,
dim
=
1
)
def
evaluate_prediction_iou
(
output
:
torch
.
Tensor
,
target
:
torch
.
Tensor
,
predicted_types
:
Dict
[
int
,
str
],
considered_types
:
List
[
int
]
=
None
,
)
->
Dict
[
str
,
float
]:
"""
Calculate Intersection over Union for multiple labels.
Parameters
----------
output : torch.Tensor
Prediction.
target : torch.Tensor
Reference.
predicted_types : Dict[int, str]
All values that can be in output and target with corresponding names.
considered_types : List[int], optional
All values that should be evaluated. The default is None.
Returns
-------
Dict[str, float]
Metrics string to value.
"""
iou
=
intersection_over_union
(
output
=
output
,
target
=
target
,
labels
=
considered_types
,
non_presence_threshold
=
torch
.
prod
(
torch
.
div
(
torch
.
tensor
(
output
.
shape
[
2
:]),
100
,
rounding_mode
=
"
floor
"
,
)
),
reduction
=
"
none
"
,
)
mean_iou
=
torch
.
nanmean
(
iou
)
metrics
=
{}
metrics
[
"
iou_mean
"
]
=
mean_iou
.
cpu
().
tolist
()
for
i
,
label
in
enumerate
(
considered_types
):
metrics
[
"
iou_
"
+
predicted_types
[
label
.
item
()]]
=
iou
[
i
].
cpu
().
tolist
()
return
metrics
def
evaluate_prediction_overlap_based
(
output
:
torch
.
Tensor
,
target
:
torch
.
Tensor
,
predicted_types
:
Dict
[
int
,
str
],
considered_types
:
List
[
int
]
=
None
,
)
->
Dict
[
str
,
float
]:
"""
Evaluate prediction with overlap based segmentation metrics.
Notes
-----
Metrics that where used:
- Intersection over union
- boundary intersection over union
Parameters
----------
output : torch.Tensor
tensor with labels one-hot encoded with shape 1 x C x SP.
target : torch.Tensor
tensor with labels one-hot encoded with shape 1 x C x SP.
predicted_types : Dict[int, str]
Types that where predicted with names.
considered_types : torch.Tensor, optional
Types that should be selected if metric allows for selection. Default
is None.
Returns
-------
metrics : Dict[str, float]
dictionary which map metrics and considered labels.
"""
metrics
=
{}
iou
=
intersection_over_union
(
output
=
output
,
target
=
target
,
labels
=
considered_types
,
non_presence_threshold
=
torch
.
prod
(
torch
.
div
(
torch
.
tensor
(
output
.
shape
[
2
:]),
100
,
rounding_mode
=
"
floor
"
,
)
),
reduction
=
"
none
"
,
)
mean_iou
=
torch
.
nanmean
(
iou
)
boundary_iou
=
boundary_intersection_over_union
(
output
=
output
,
target
=
target
,
boundary_width
=
1
,
kernel_type
=
"
box
"
,
labels
=
considered_types
,
non_presence_threshold
=
8
,
reduction
=
"
none
"
,
)
mean_boundary_iou
=
torch
.
nanmean
(
boundary_iou
)
metrics
[
"
iou_mean
"
]
=
mean_iou
.
cpu
().
tolist
()
metrics
[
"
iou_boundary_mean
"
]
=
mean_boundary_iou
.
cpu
().
tolist
()
for
i
,
label
in
enumerate
(
considered_types
):
metrics
[
"
iou_
"
+
predicted_types
[
label
.
item
()]]
=
iou
[
i
].
cpu
().
tolist
()
metrics
[
"
iou_boundary_
"
+
predicted_types
[
label
.
item
()]
]
=
boundary_iou
[
i
].
cpu
().
tolist
()
return
metrics
def
evaluate_prediction
(
output
:
torch
.
Tensor
,
target
:
torch
.
Tensor
,
predicted_types
:
Dict
[
int
,
str
],
considered_types
:
List
[
int
]
=
None
,
)
->
Dict
[
str
,
float
]:
"""
Evaluate prediction with relevant segmentation metrics.
Notes
-----
Metrics that where used:
- Intersection over union
- 95th percentile of Hausdorff distance (surface distance)
- Variation of information
Parameters
----------
output : torch.Tensor
tensor with labels one-hot encoded with shape 1 x C x SP.
target : torch.Tensor
tensor with labels one-hot encoded with shape 1 x C x SP.
predicted_types : Dict[int, str]
Types that where predicted with names.
considered_types : torch.Tensor, optional
Types that should be selected if metric allows for selection. Default
is None.
Returns
-------
metrics : Dict[str, float]
dictionary which map metrics and considered labels.
"""
metrics
=
{}
iou
=
intersection_over_union
(
output
=
output
,
target
=
target
,
labels
=
considered_types
,
non_presence_threshold
=
torch
.
prod
(
torch
.
div
(
torch
.
tensor
(
output
.
shape
[
2
:]),
100
,
rounding_mode
=
"
floor
"
,
)
),
reduction
=
"
none
"
,
)
mean_iou
=
torch
.
nanmean
(
iou
)
boundary_iou
=
boundary_intersection_over_union
(
output
=
output
,
target
=
target
,
boundary_width
=
1
,
kernel_type
=
"
box
"
,
labels
=
considered_types
,
non_presence_threshold
=
8
,
reduction
=
"
none
"
,
)
mean_boundary_iou
=
torch
.
nanmean
(
boundary_iou
)
hd
=
hausdorff_distance_metric
(
output
=
output
,
target
=
target
,
percentile
=
95
,
labels
=
considered_types
,
label_reduction
=
"
none
"
,
reduction
=
"
none
"
,
directed
=
False
,
).
squeeze
()
mean_hd
=
torch
.
nanmean
(
hd
)
voi
=
variation_of_information
(
output
=
output
,
target
=
target
,
labels
=
None
,
# not implemented yet
normalization
=
False
,
reduction
=
"
none
"
,
)
metrics
[
"
iou_mean
"
]
=
mean_iou
.
cpu
().
tolist
()
metrics
[
"
iou_boundary_mean
"
]
=
mean_boundary_iou
.
cpu
().
tolist
()
metrics
[
"
hd_mean
"
]
=
mean_hd
.
cpu
().
tolist
()
metrics
[
"
voi
"
]
=
voi
.
cpu
().
tolist
()
for
i
,
label
in
enumerate
(
considered_types
):
metrics
[
"
iou_
"
+
predicted_types
[
label
.
item
()]]
=
iou
[
i
].
cpu
().
tolist
()
metrics
[
"
iou_boundary_
"
+
predicted_types
[
label
.
item
()]
]
=
boundary_iou
[
i
].
cpu
().
tolist
()
metrics
[
"
hd_
"
+
predicted_types
[
label
.
item
()]
]
=
hd
[
i
].
cpu
().
tolist
()
return
metrics
def
evaluate_prediction_from_array
(
y_pred
:
np
.
ndarray
,
target
:
np
.
ndarray
,
device
:
torch
.
device
,
predicted_types
:
Dict
[
int
,
str
],
considered_types
:
List
[
int
]
=
None
,
accuracy_fn
:
Callable
=
None
,
)
->
Dict
[
str
,
float
]:
"""
Evaluate predicted result against reference.
Parameters
----------
y_pred : np.ndarray
Array of prediction.
target : np.ndarray
Array of reference.
device : torch.device
Device which computes.
predicted_types : Dict[int, str]
Types that where predicted with names.
considered_types : List[int], optional
Types that should be selected if metric allows for selection. The
default is None.
accuracy_fn : Callable, optional
Performance metric. If None, there is a standard evaluation process.
The default is None.
Returns
-------
metrics : Dict[str, float]
Dictionary which map metrics and considered labels.
"""
with
torch
.
no_grad
():
y_pred
=
torch
.
from_numpy
(
y_pred
).
to
(
torch
.
long
).
to
(
device
)
target
=
torch
.
from_numpy
(
target
).
to
(
torch
.
long
).
to
(
device
)
y_pred
=
encode_to_batch_times_class_times_spatial
(
y_pred
,
len
(
predicted_types
),
)
target
=
encode_to_batch_times_class_times_spatial
(
target
,
len
(
predicted_types
),
)
if
accuracy_fn
is
None
:
metrics
=
evaluate_prediction
(
y_pred
,
target
,
predicted_types
,
considered_types
,
)
else
:
metrics
=
accuracy_fn
(
output
=
y_pred
,
target
=
target
)
return
metrics
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment