From 3ba405eca0a8d00f222d8470dc7a850281eb5085 Mon Sep 17 00:00:00 2001 From: Scott Linderman <scott.linderman@gmail.com> Date: Sat, 24 Sep 2016 10:04:17 -0400 Subject: [PATCH] python 3 imports --- pyhsmm/internals/hmm_states.py | 16 ++++++++-------- pyhsmm/internals/hsmm_states.py | 6 +++--- pyhsmm/util/plot.py | 3 ++- 3 files changed, 13 insertions(+), 12 deletions(-) diff --git a/pyhsmm/internals/hmm_states.py b/pyhsmm/internals/hmm_states.py index 30ce024..abbf50a 100644 --- a/pyhsmm/internals/hmm_states.py +++ b/pyhsmm/internals/hmm_states.py @@ -605,20 +605,20 @@ class HMMStatesEigen(HMMStatesPython): @staticmethod def _messages_backwards_log(trans_matrix,log_likelihoods): - from hmm_messages_interface import messages_backwards_log + from pyhsmm.internals.hmm_messages_interface import messages_backwards_log return messages_backwards_log( trans_matrix,log_likelihoods, np.empty_like(log_likelihoods)) @staticmethod def _messages_forwards_log(trans_matrix,init_state_distn,log_likelihoods): - from hmm_messages_interface import messages_forwards_log + from pyhsmm.internals.hmm_messages_interface import messages_forwards_log return messages_forwards_log(trans_matrix,log_likelihoods, init_state_distn,np.empty_like(log_likelihoods)) @staticmethod def _messages_forwards_normalized(trans_matrix,init_state_distn,log_likelihoods): - from hmm_messages_interface import messages_forwards_normalized + from pyhsmm.internals.hmm_messages_interface import messages_forwards_normalized return messages_forwards_normalized(trans_matrix,log_likelihoods, init_state_distn,np.empty_like(log_likelihoods)) @@ -640,19 +640,19 @@ class HMMStatesEigen(HMMStatesPython): @staticmethod def _sample_forwards_log(betal,trans_matrix,init_state_distn,log_likelihoods): - from hmm_messages_interface import sample_forwards_log + from pyhsmm.internals.hmm_messages_interface import sample_forwards_log return sample_forwards_log(trans_matrix,log_likelihoods, init_state_distn,betal,np.empty(log_likelihoods.shape[0],dtype='int32')) @staticmethod def _sample_backwards_normalized(alphan,trans_matrix_transpose): - from hmm_messages_interface import sample_backwards_normalized + from pyhsmm.internals.hmm_messages_interface import sample_backwards_normalized return sample_backwards_normalized(trans_matrix_transpose,alphan, np.empty(alphan.shape[0],dtype='int32')) @staticmethod def _resample_multiple(states_list): - from hmm_messages_interface import resample_normalized_multiple + from pyhsmm.internals.hmm_messages_interface import resample_normalized_multiple if len(states_list) > 0: loglikes = resample_normalized_multiple( states_list[0].trans_matrix,states_list[0].pi_0, @@ -666,7 +666,7 @@ class HMMStatesEigen(HMMStatesPython): def _expected_statistics_from_messages( trans_potential,likelihood_log_potential,alphal,betal, expected_states=None,expected_transcounts=None): - from hmm_messages_interface import expected_statistics_log + from pyhsmm.internals.hmm_messages_interface import expected_statistics_log expected_states = np.zeros_like(alphal) \ if expected_states is None else expected_states expected_transcounts = np.zeros_like(trans_potential) \ @@ -678,7 +678,7 @@ class HMMStatesEigen(HMMStatesPython): ### Vitberbi def Viterbi(self): - from hmm_messages_interface import viterbi + from pyhsmm.internals.hmm_messages_interface import viterbi self.stateseq = viterbi(self.trans_matrix,self.aBl,self.pi_0, np.empty(self.aBl.shape[0],dtype='int32')) diff --git a/pyhsmm/internals/hsmm_states.py b/pyhsmm/internals/hsmm_states.py index a4b4108..a37303e 100644 --- a/pyhsmm/internals/hsmm_states.py +++ b/pyhsmm/internals/hsmm_states.py @@ -500,7 +500,7 @@ class HSMMStatesEigen(HSMMStatesPython): def messages_backwards(self): # NOTE: np.maximum calls are because the C++ code doesn't do # np.logaddexp(-inf,-inf) = -inf, it likes nans instead - from hsmm_messages_interface import messages_backwards_log + from pyhsmm.internals.hsmm_messages_interface import messages_backwards_log betal, betastarl = messages_backwards_log( np.maximum(self.trans_matrix,1e-50),self.aBl,np.maximum(self.aDl,-1000000), self.aDsl,np.empty_like(self.aBl),np.empty_like(self.aBl), @@ -519,7 +519,7 @@ class HSMMStatesEigen(HSMMStatesPython): return super(HSMMStatesEigen,self).messages_backwards() def sample_forwards(self,betal,betastarl): - from hsmm_messages_interface import sample_forwards_log + from pyhsmm.internals.hsmm_messages_interface import sample_forwards_log if self.left_censoring: raise NotImplementedError caBl = np.vstack((np.zeros(betal.shape[1]),np.cumsum(self.aBl[:-1],axis=0))) @@ -533,7 +533,7 @@ class HSMMStatesEigen(HSMMStatesPython): @staticmethod def _resample_multiple(states_list): - from hsmm_messages_interface import resample_log_multiple + from pyhsmm.internals.hsmm_messages_interface import resample_log_multiple if len(states_list) > 0: Ts = [s.T for s in states_list] longest = np.argmax(Ts) diff --git a/pyhsmm/util/plot.py b/pyhsmm/util/plot.py index 47c1248..dc508ac 100644 --- a/pyhsmm/util/plot.py +++ b/pyhsmm/util/plot.py @@ -1,7 +1,8 @@ from __future__ import division import numpy as np from matplotlib import pyplot as plt -from stats import cov + +from pyhsmm.util.stats import cov def plot_gaussian_2D(mu, lmbda, color='b', centermarker=True,label='',alpha=1.,ax=None,artists=None): ''' -- GitLab